Exercise 9

(a) Find the solution in Exercise 5 that is equal to $\frac{1}{1+x^{2}}$ along the x-axis.
(b) Plot the graph of the solution as a function of x and t.
(c) In what direction is the waveform moving as t increases?

Solution

The solution in Exercise 5 that is equal to $\frac{1}{1+x^{2}}$ along the x-axis satisfies the following initial value problem.

$$
\begin{aligned}
& \frac{\partial u}{\partial t}-\frac{\partial u}{\partial x}=0, \quad-\infty<x<\infty,-\infty<t<\infty \\
& u(x, 0)=\frac{1}{1+x^{2}}
\end{aligned}
$$

Make the change of variables, $\alpha=x+t$ and $\beta=x-t$, and use the chain rule to write the derivatives in terms of these new variables.

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial u}{\partial \alpha} \frac{\partial \alpha}{\partial x}+\frac{\partial u}{\partial \beta} \frac{\partial \beta}{\partial x}=\frac{\partial u}{\partial \alpha}(1)+\frac{\partial u}{\partial \beta}(1)=\frac{\partial u}{\partial \alpha}+\frac{\partial u}{\partial \beta} \\
& \frac{\partial u}{\partial t}=\frac{\partial u}{\partial \alpha} \frac{\partial \alpha}{\partial t}+\frac{\partial u}{\partial \beta} \frac{\partial \beta}{\partial t}=\frac{\partial u}{\partial \alpha}(1)+\frac{\partial u}{\partial \beta}(-1)=\frac{\partial u}{\partial \alpha}-\frac{\partial u}{\partial \beta}
\end{aligned}
$$

The PDE then becomes

$$
\begin{aligned}
0 & =\frac{\partial u}{\partial t}-\frac{\partial u}{\partial x} \\
& =\left(\frac{\partial u}{\partial \alpha}-\frac{\partial u}{\partial \beta}\right)-\left(\frac{\partial u}{\partial \alpha}+\frac{\partial u}{\partial \beta}\right) \\
& =-2 \frac{\partial u}{\partial \beta} .
\end{aligned}
$$

Divide both sides by -2 .

$$
\frac{\partial u}{\partial \beta}=0
$$

Integrate both sides partially with respect to β to get u.

$$
u(\alpha, \beta)=f(\alpha)
$$

Here f is an arbitrary function. Now that the general solution to the PDE is known, change back to the original variables.

$$
u(x, t)=f(x+t)
$$

To determine f, apply the initial condition.

$$
u(x, 0)=f(x)=\frac{1}{1+x^{2}}
$$

What this actually means is that $f(w)=\frac{1}{1+w^{2}}$, where w is any expression, so

$$
f(x+t)=\frac{1}{1+(x+t)^{2}} .
$$

Therefore,

$$
u(x, t)=\frac{1}{1+(x+t)^{2}}
$$

Below is a plot of this solution versus x and t.

Notice that as t increases, the x-coordinate of the waveform's peak decreases. In other words, the waveform is moving in the negative x-direction.

